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Abstract

We consider forecasting with uncertainty about the choice of predictor variables. The researcher
wants to select a model, estimate the parameters, and use the parameter estimates for forecasting.
We investigate the distributional properties of a number of different schemes for model choice and
parameter estimation: in-sample model selection using the Akaike information criterion, out-of-
sample model selection, and splitting the data into subsamples for model selection and parameter
estimation. Using a weak-predictor local asymptotic scheme, we provide a representation result that
facilitates comparison of the distributional properties of the procedures and their associated fore-
cast risks. We develop a simulation procedure that improves the accuracy of the out-of-sample and
split-sample methods uniformly over the local parameter space. We also examine how bootstrap ag-
gregation (bagging) affects the local asymptotic risk of the estimators and their associated forecasts.
Numerically, we find that for many values of the local parameter, the out-of-sample and split-sample
schemes perform poorly if implemented in the conventional way. But they perform well, if imple-
mented in conjunction with our risk-reduction method or bagging.
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1 Introduction

In this paper, we reconsider the problem of forecasting when there is uncertainty about the forecasting

model. As is well known, a model that fits well in sample may not be good for forecasting—a model may

fit well in-sample, only to turn out to predict poorly. Consequently, it is common practice to select the

model based on pseudo-out-of-sample fit from a sequence of recursive or rolling predictions. Parame-

ters are then estimated over the whole sample period. The idea of using an out-of-sample criterion is

discussed by Clark (2004) and West (2006). It is an idea with a long history, going back to Wilson (1934),

Meese and Rogoff (1983), and Ashley, Granger, and Schmalensee (1980), and is very intuitive: it is what a

researcher could have done at the time. Instead, one might select the model based on in-sample fit, but

adjust for overfitting by using an information criterion, such as the Akaike Information Criterion (AIC)

(Akaike, 1974), as advocated by Inoue and Kilian (2006).

We consider a pseudo-likelihood setting with a fixed number k of potential parameters to be estimated,

each of which has a coefficient that is local to zero. The concept of model selection that we envision

amounts to selecting a set of zero restrictions; in a regression setting, for example, this would indicate

which predictors are excluded from the regression. Thus there are up to 2k possible models among which

we can choose. Having chosen the model, we then have to estimate the parameters and use these for

forecasting. Although some model will be best in terms of predictive accuracy, the local-to-zero nesting

means that we can never consistently select that model. We consider various methods of model selection

and forecasting, including: using in-sample fit with the AIC information criterion; selecting the model

based on recursive pseudo-out-of-sample forecast accuracy and then using the whole dataset for pa-

rameter estimation; and splitting the sample into two parts, using one part for model selection and the

other for parameter estimation. We call this last method the split-sample approach. Unlike the first two

methods, it is not commonly used in practice. But it does ensure asymptotic independence between

parameter estimates and model selection, unlike methods based on in-sample fit (Leeb and Pötscher,

2005; Hansen, 2009), and also unlike the standard out-of-sample approach.

We obtain asymptotic characterizations of these forecasting procedures under the local parameter se-

quence. A key step is to obtain an asymptotic representation of the partial sum process for the score

function as the sum of a term that is directly informative about the local parameters, and another term
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that is an independent Gaussian process. This allows us to provide a limit-experiment type represen-

tation of the procedures, from which we can calculate normalized local asymptotic mean square pre-

diction errors up to O(T −1) terms. We show that the recursive pseudo-out-of-sample and split-sample

procedures are inefficient, in the sense that their limit distributions depend on the ancillary Gaussian

noise process.

Our characterizations also suggest ways to improve upon these procedures. The influence of the ancil-

lary noise term in the limiting asymptotic representation can be eliminated by a conditioning argument.

We can implement this noise reduction via a simulation-and-averaging scheme; doing this is shown to

uniformly improve the out-of-sample and split-sample methods asymptotically for a wide variety of loss

functions.

This method is related to bootstrap aggregating (bagging) (Breiman, 1996) in which the data are resam-

pled, the forecasting method is applied to the resampled data, and the resulting forecasts are then aver-

aged over all the bootstrap samples. Bagging has a smoothing effect that alters the risk properties of es-

timators, but averaging over bootstrap draws can also reduce the influence of the extraneous noise term

in the out-of-sample and split-sample methods. Earlier theoretical work on bagging, notably Bühlmann

and Yu (2002), emphasized its smoothing effect rather that the noise reduction effect, though Efron

(2014) observes that it can reduce variability 1.

We then numerically compare the various procedures in terms of their local asymptotic risk. In their

standard forms the rank ordering among the in-sample, out-of-sample and split-sample methods de-

pends on the localization parameter which is not consistently estimable (although one can form a confi-

dence interval for it). Nonetheless, we find that for many values of the localization parameter, in-sample

forecasting using the AIC gives the most accurate forecasts, out-of-sample prediction does worse, and

the split-sample method does worst of all. This is intuitive because the out-of-sample and split-sample

schemes are in some sense wasting data, and is essentially the argument of Inoue and Kilian (2004) and

Inoue and Kilian (2006) for the use of in-sample rather than out-of-sample predictability tests. How-

ever, introducing the simulation or bagging step changes the rank ordering substantially, and entirely

reverses it for many values of the localization parameter. Our simulation scheme has no effect on in-

1One other useful feature of the out-of-sample forecasting setup is that it can be constructed to use only real-time data which
precisely mimics the data available to a researcher in the presence of data revisions. Unfortunately, adding our simulation
scheme or bootstrap aggregation step destroys this feature.
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sample forecasts, but reduces the local asymptotic mean square prediction error of the out-of-sample

and split-sample forecasts uniformly in the localization parameter, and the reductions are generally nu-

merically large. Bagging can modestly reduce the local asymptotic mean square prediction error of the

in-sample forecasts over some parts of the parameter space, but it makes a more dramatic difference to

the out-of-sample and split-sample forecasts. In short, the out-of-sample and split-sample forecasts are

poor choices in their conventional form, but become very competitive when combined with a simulation

or bagging step.

In the next section, we set up the model and introduce the various procedures we will evaluate. In Sec-

tion 3, we derive asymptotic characterizations via our representation theorem for the partial sum pro-

cess. Section 4 contains some extensions. Section 5 explores the local asymptotic risk properties of the

procedures numerically. Section 6 examines some finite-sample simulation evidence. Section 7 contains

an illustrative application, and Section 8 concludes.

2 Pseudo-Likelihood Framework

We observe (yt , xt ) for t = 1, . . . ,T and wish to forecast yT+1 given knowledge of xT+1. Let the pseudo log

(conditional) likelihood be

`(β) =
T∑

t=1
`t (β) =

T∑
t=1

ln f (yt |xt ,β), (2.1)

where f is a conditional density function and the parameter β is k × 1. This framework could apply

to cross-sectional regression of an outcome variable yt on a k ×1 vector of predictors xt , h-step ahead

forecasting regressions (where xt are suitably lagged predictor variables), vector autoregression (where

xt contains lagged values of the vector yt ), and nonlinear regression models. There may be unmodeled

dependence, subject to the large-sample distributional assumptions imposed below.

Model selection amounts to setting some elements of β to zero, and estimating the others. Thus there

are up to 2k possible models. Let m ⊂ {1, . . . ,k} denote a model, with the interpretation that the elements

of m indicate which coefficients of β are allowed to be nonzero. The set of possible models M is a subset

of the power set of {1, . . . ,k}.

We consider a variety of strategies for model selection and parameter estimation. Each strategy will end
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up giving us an estimator for β, some elements of which may be zero. We denote this overall estimator

as β̃. The strategies that we consider are:

1. Maximum Likelihood (MLE). Set β̃ to the unrestricted (pseudo) maximum likelihood estimator,

β̂, that maximizes `(β). We assume that this is consistent for the pseudo-true value.

2. James-Stein (JS). The positive-part James-Stein estimator uses the unrestricted estimate β̂ and an

estimate V̂ of its asymptotic variance-covariance matrix. The JS estimator for k > 2 is:

β̃= β̂ ·max

{
1− k −2

T β̂′V̂ −1β̂
,0

}
. (2.2)

3. Laplace estimator. Let t denote the vector of t-statistics consisting of the elements of β̂ each di-

vided by the j th diagonal element of V̂ .The Laplace estimator of β is:

β̃= β̂◦ h̃(t ) (2.3)

where h̃(x) =
(
1− ch(x)

x

)
(element-by-element), h(x) = e−cxΦ(x−c)−ecxΦ(−x−c)

e−cxΦ(x−c)+ecxΦ(−x−c) , c = ln(2) andΦ(·) is the

standard normal cdf. In the scalar case, this is equivalent to the Bayesian posterior mean corre-

sponding to a certain Laplace prior distribution, and is therefore admissible(Magnus, 2002; Mag-

nus, Powell, and Prüfer, 2010).

4. LASSO Estimator. Set β̃ to maximize l (β)−λT
∑k

j=1 |β j |, where λT is a penalty term. Penalized

maximum likelihood estimators of this sort have been considered by Tibshirani (1996) and many

others.

5. Small Model. Set β̃= 0.

6. AIC (In-sample). For each model m ∈ M , let β̂(m) denote the restricted pseudo-ML estimator

that maximizes `(β) subject to the zero restrictions implied by m. (Thus, β̂(m) is a k × 1 vector

with zeros in the locations implied by m.) Let n(m) be the number of free parameters in model m.

For each m ∈M we calculate the AIC objective function

AIC (m) = 2`(β̂(m))−2n(m), (2.4)
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and choose the model m∗ that maximizes AIC (m). Then set β̃= β̂(m∗).

7. Out of Sample. For each model m, we estimate the model recursively starting a fraction π ∈ (0,1)

of the way through the sample, and calculate its one-period-ahead predictive density to obtain a

pseudo out-of-sample estimate of predictive performance. Let β̂1,t−1(m) denote the pseudo max-

imum likelihood estimate for model m using observations 1 to t −1. For each m, we calculate

T∑
t=[Tπ]+1

`t (β̂1,t−1(m)). (2.5)

We then choose the model m that maximizes this predictive likelihood, and use the full sample for

estimation of the model.2

8. Split-sample. For each model m, we calculate AIC using data up to a fraction π of the way through

the sample:

AICss(m) = 2`(β̂1,[Tπ](m))−2n(m). (2.6)

For m∗ = argmax AICss(m), we use the second fraction of the sample to estimate the model pa-

rameters:

β̃= β̂[Tπ]+1,T (m∗). (2.7)

Later in the paper, we also consider modifications of these procedures that attempt to improve their risk

properties.

We focus on obtaining limiting distributions for these estimators, which we denote generically as β̃. This

may be of direct interest in itself as a parameter estimation problem. Alternatively, it may be useful for

forecasting. Suppose that a forecaster creates a point forecast of yT+1 using a rule ŷT+1(β̃), where β̃

denotes an estimator of β. The function ŷT+1(·) may depend on xT+1, and it may depend on the data up

to time T in other ways. Given a forecasting loss function L(ŷT+1, yT+1), let

L(a,β) = E
[
L(ŷT+1(a),β)

]
, (2.8)

2Several authors test for the statistical significance of differences in out-of-sample forecasting performance with one model,
typically a simple benchmark, as the null (see, for example Diebold and Mariano (1995) and Hansen and Timmermann (2013)).
Here we are instead thinking of selecting the model based on the point estimate of its pseudo out-of-sample predictive perfor-
mance.
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where the expectation is with respect to the conditional distribution of yT+1 under parameter value β.

Define the regret as

Lr (a,β) = L(a,β)− inf
c

L(c,β). (2.9)

This subtracts off the expected forecast loss associated with the infeasible optimal choice of the estimate

used in the forecast rule. The regret risk is defined as

R(β̃,β) = E
[

Lr (β̃,β)
]

, (2.10)

where the expectation is with respect to the sampling distribution of β̃, again under the “true” parameter

value β.

Typically, our estimators β̃ will be
p

T -consistent for β, so a suitably normalized version of the forecast

risk will depend on the local behavior of Lr (a,β) as a → β. For a number of standard forecast loss func-

tions, and suitable choices for ŷT+1(·), we will have an expansion of the form

T ·Lr (a,β) =G
(p

T (a −β)
)
+o

(‖a −β‖) , (2.11)

for some convex function G . Then the normalized regret risk for the forecast rule ŷT+1(β̃) will satisfy

T ·R(β̃,β) = E
[
G

(p
T (β̃−β)

)]
+op (1). (2.12)

Thus obtaining the limiting distribution of
p

T (β̃−β) will be key to characterizing the risk properties

of the associated forecast rule. (The convexity of G will also prove to be useful for our risk reduction

methods.) In the next section we give some examples of some cases where the representation in Equation

(2.12) holds.

2.1 Example: Prediction in a Regression Model

To illustrate our approach in a simple setting, we consider prediction using a standard regression model:

yt =β′xt +ut , (2.13)
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where the ut are i.i.d. with mean 0, finite varianceσ2, and 2+δfinite moments for some δ> 0. We assume

xt is a k ×1 i.i.d. vector that has been orthonormalized, so that E [xt x ′
t ] = Ik . (The orthonormality and

time-independence of xt is not essential for the analysis, but simplifies the notation.)

This model fits into the general pseudo-likelihood framework of Section 2, using the standard Gaussian

likelihood. Then β̂, the unrestricted pseudo-ML estimator of β, is the OLS estimator; and β̂(m), the

restricted pseudo-ML estimator under model m, is the restricted OLS estimator using only the regressors

indicated by m. Each model corresponds to some subset of the k regressors that are to be used for

forecasting.

Consider forecasting under squared error loss, with forecasts of the form ŷT+1 = β̃′xT+1, where β̃ can

again be any of the estimators of β. The mean squared prediction error is

MSPE = E
[
(yT+1 − β̃′xT+1)2]= E

[
(uT+1 − (β̃−β)′xT+1)2]

=σ2 +E
[
(β̃−β)′(β̃−β)

]
. (2.14)

The first term on the right hand side of (2.14) is the risk of infeasible forecast rule that uses the true

value of the parameter, β′xT+1. The second term is O(T −1) and differs across forecasting methods. In

the forecasting context, parameter estimation uncertainty is of small order relative to uncertainty in the

distribution of the shocks. But uncertainty about the distribution of the shocks is common to all the

models. We therefore subtract the term σ2 and scale the risk by T to obtain the normalized mean square

prediction error criterion

N MSPE = T
(
MSPE −σ2)= E

[p
T (β̃−β)′

p
T (β̃−β)

]
. (2.15)

This is equivalent to the normalized regret risk, as defined above, for squared error loss.

Other loss functions lead to different expressions for the regret risk, but in some leading cases they will

continue to satisfy Equation (2.12). For example suppose we work with linex forecast loss,

L(ŷT+1, yT+1) = exp
(
θ(yT+1 − ŷT+1)

)−θ(yT+1 − ŷT+1)−1, (2.16)

for some given θ 6= 0, and suppose that uT+1 is Gaussian. In this case, the oracle point forecast using
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knowledge of β and σ2 is y∗
T+1 =β′xT+1 + θσ2

2 , so it is natural to consider rules of the form

ŷT+1(β̃) = β̃′xT+1 + θσ̂2

2
,

where σ̂2 is a consistent estimator of σ2. This forecast rule employs an estimate of the optimal “shift” of

the naive forecast to account for the asymmetry of the linex loss function. Using a second-order Taylor

expansion, it can be shown that the normalized regret risk for this forecast rule is

T ·R(β̃,β) = θ2

2
E

[p
T (β̃−β)′

p
T (β̃−β)

]
+oP (1), (2.17)

again satisfying (2.12).

To gain further intuition for our theoretical results in the next section, consider the special case where

the ut are i.i.d. N (0,1) and the regressors are treated as fixed and satisfy 1
T

∑T
t=1 xt x ′

t = Ik . Then the least

squares estimator for the full set of parameters has an exact normal distribution:

β̂=
(

T∑
t=1

xt x ′
t

)−1 T∑
t=1

xt yt ∼ N
(
β,σ2Ik /n

)
(2.18)

and β̂ is a minimal sufficient statistic for β. If a procedure makes nontrivial use of information in the

data other than that contained in β̂, it is introducing an unnecessary source of randomness. In the next

section we will obtain an asymptotic analog to this argument in the general pseudo-likelihood setting,

and show how it applies to the various procedures we consider.

3 Local Asymptotics

In order to capture the role of parameter and model uncertainty in our analysis, the joint distribution of

{(y1, x1), . . . , (yT , xT )} is assumed to be a triangular array with drifting parameters. Let {(y1, x1), . . . , (yT , xT )}

have joint distribution PT , and define the pseudo-true value of the parameter as

β0,T = argmax
β

∫
`(β)dPT . (3.1)
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We take the pseudo-true values (or functions of them) as our objects of interest. We will take limits as

T →∞ under the assumption that

β0,T = bp
T

, b ∈Rk . (3.2)

This type of drifting sequence has been used by Claeskens and Hjort (2008) and Inoue and Kilian (2004)

and others to study the large-sample properties of model selection procedures. It preserves the role of

parameter uncertainty in the asymptotic approximations, unlike fixed-alternative asymptotics in which

model selection can determine which coefficients are nonzero with probability approaching one. Later

in the paper, we will show some Monte-Carlo evidence indicating that this local parameterization pro-

vides a good approximation in small samples. The analysis could be extended to allow some components

ofβ to be localized away from zero, corresponding to situations where some components ofβ are known

to be nonzero. We use →d to denote weak convergence and →p to denote convergence in probability un-

der the sequence of measures {PT }∞T=1. Our results below depend crucially on the convergence properties

of the partial sums of the pseudo-likelihood function. We make the following high level assumptions.

Assumption 3.1

T −1/2
[Tr ]∑
t=1

∂`t (β0,T )

∂β
→d B(r ),

where B(r ) is a k-dimensional Brownian motion with positive definite covariance matrixΛ.

Assumption 3.2 For all sequences βT in a T −1/2-neighborhood of zero,

−T −1
[Tr ]∑
t=1

∂2`t (βT )

∂β∂β′ →p rΣ.

where Σ is positive definite.

Assumption 3.3 For any fixed k ×k matrix C ,

[Tr ]∑
t=1

t−1∑
s=1

∂ls(β0,T )

∂β

′ 1

t −1
C
∂lt (β0,T )

∂β
→d

∫ r

0

1

s
B(s)C dB(s).

These high-level assumptions would follow from conventional regularity conditions in correctly speci-

fied parametric models. In misspecified models, the assumptions require that the pseudo-true parame-
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ter sequence β0,T is related to the distribution of the data in a smooth way.

To gain intuition for the results to follow, consider the case where the parametric model with conditional

likelihood f (yt |xt ,β) is correctly specified. Then, under standard regularity conditions, Assumptions 3.1,

3.2 and 3.3 will hold withΛ=Σ. Furthermore, the model will be locally asymptotically normal (LAN), and

possess a limit experiment representation (see for example van der Vaart 1998, Chs. 7-9). In particular,

consider any estimator sequence β̃ with limiting distributions in the sense that

T 1/2β̃→d Lb , (3.3)

where the limit is taken under the drifting sequences of measures corresponding to β0,T = T −1/2b, and

Lb is a law that may depend on b. Then the estimator β̃ has an asymptotic representation as a random-

ized estimator in a shifted normal model: if Y is a single draw from the N (Σb,Σ) distribution, and U

is random variable independent of Y (with sufficiently rich support3), there exists an estimator S(Y ,U )

with

S(Y ,U ) ∼Lb (3.4)

for all b. In other words, the sequence T 1/2β̃ is asymptotically equivalent to the randomized estimator S

under all values of the local parameter.

We extend this type of asymptotic representation, in terms of an asymptotically sufficient component

and an independent randomization, to the pseudo-likelihood setup. We do this by establishing a large-

sample representation of the partial sum process for the score function that corresponds to the (Y ,U )

limit experiments in parametric LAN models.

From Assumptions 3.1 and 3.2, it follows that:

T −1/2
[Tr ]∑
t=1

∂`t (0)

∂β
→d B(r )+ rΣb =: Y (r ) (3.5)

Thus the partial sums of the score function evaluated at β= 0 converge to a Brownian motion with linear

drift. By a standard argument, we can decompose this process into the sum of a normal random vector

and a Brownian bridge:

3Typically, a representation S(Y ,U ) exists for U distributed uniform on [0,1], but for our results below, it is useful to allow U
to have a more general form.
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Proposition 3.4 Under the drifting sequence in Equation (3.2) and Assumptions 3.1 and 3.2,

T −1/2
[Tr ]∑
t=1

∂`t (0)

∂β
→d Y (r ) = r Y +UB (r ), (3.6)

where Y := Y (1) ∼ N (Σb,Λ), and UB (r ) is a k-dimensional Brownian bridge with covariance matrix Λ,

where UB is independent of Y .

All proofs are given in Appendix A. This result decomposes the limit of the partial sums of the score

function into two stochastic components, one of which depends on the local parameter b and one of

which is ancillary.

Let Σ(m) denote the k × k matrix that consists of the elements of Σ in the rows and columns indexed

by m and zeros in all other locations, and let H(m) denote the Moore-Penrose generalized inverse of

Σ(m). Then T 1/2β̂→d Σ
−1Y (1) and T 1/2β̂(m) →d H(m)Y (1,m), where Y (r,m) denotes the k ×1 vector

with the elements of Y (r ) in the locations indexed by m and zeros elsewhere. This leads to the following

asymptotic characterizations of the procedures:

Proposition 3.5 Under the drifting sequence in Equation (3.2) and Assumptions 3.1, 3.2 and 3.3, we have

the following limiting representations of the parameter estimation procedures:

(i) Using unrestricted MLE:

T 1/2β̂→d Σ
−1Y (1) (3.7)

(ii) Using the positive-part James-Stein estimator:

T 1/2β̃→d Σ
−1Y (1)max

{
1− k −2

Y (1)′Σ−2Y (1)
,0

}
(3.8)

(iii) Using the Laplace estimator:

T 1/2β̃→d Y (1)◦ h̃(W Y (1)) (3.9)

where W is a diagonal matrix with the j th diagonal element equal to the reciprocal of the square root of

the j th diagonal element of Σ−1.
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(iv) Selecting the model using the AIC:

T 1/2β̃→d

∑
m∗

H(m∗)Y (1,m∗)1{m∗ = argmax
m

[Y (1,m)′H(m)Y (1,m)−2n(m)]} (3.10)

(v) Selecting the model minimizing recursive out-of-sample error starting a fraction π of the way through

the sample:

T 1/2β̃→d

∑
m∗

H(m∗)Y (1,m∗)1{m∗ = argmax
m

[Y (1)′H(m)Y (1)

− 1

π
Y (π)′H(m)Y (π)+ tr (H(m)Λ) log(π)]} (3.11)

(vi) Using the split-sample method, using the first fraction π of the sample for model selection and the rest

for parameter estimation:

T 1/2β̃→d

∑
m∗

H(m∗)
Y (1,m∗)−Y (π,m∗)

1−π 1{m∗ = argmax
m

[
1

π
Y (π,m)′H(m)Y (π,m)−2n(m)]} (3.12)

where
∑

m∗ denotes the summation over all the models in M .

Of course, there are other criteria besides AIC that we could use for in-sample model selection. Some of

these are asymptotically equivalent to AIC, such as Mallows’ Cp criterion (Mallows, 1973) or leave-one-

out cross-validation. Using any of these information criteria for in-sample model selection will give the

same asymptotic distribution as in equation (3.10). Alternatively, one could use the Bayes information

criterion (BIC). In the present setting, because the penalty term goes to zero at a rate slower than T −1, the

BIC will pick the small model (β= 0) with probability converging to one. Part (v) of the proposition can

immediately be adapted to selecting the model minimizing out-of-sample error with a rolling estimation

window, as long as the estimation window contains a fixed fraction of the sample size, but not if it instead

contains a fixed number of observations as in Giacomini and White (2006).

Inoue and Kilian (2004) considered the local power of some in-sample and out-of-sample tests of the

hypothesis that β = 0. They derived equation (3.7) and a result very similar to equation (3.11). The

expression in equation (3.11) involves asymptotically selecting the model by maximizing an expression

13



that is the difference between two quadratic forms plus a nonstochastic term. This derivation is also

closely related to Hansen and Timmermann (2013) who showed that the difference between the out-of-

sample predictive accuracy of two models is asymptotically equivalent to the difference between two

Wald statistics plus a nonstochastic term.

3.1 Rao-Blackwellization

The estimators other than the out-of-sample and split-sample estimators can be viewed as generalized

shrinkage estimators (Stock and Watson, 2012) as their limiting distributions are of the form: T 1/2β̃→d

Y g (Y ) for some nonlinear function g (Y ). In contrast, the limiting distributions in equations (3.11) and

(3.12) are functions of both Y and an independent Brownian bridge, UB (r ). Their dependence on the

noise term U =UB suggests a novel way to improve them.

In the statistical experiment of observing the pair (Y ,U ), where Y ∼ N (Σb,Λ) and U is ancillary, the

variable Y is sufficient. Thus, for any estimator S(Y ,U ), consider its conditional expectation

S̃(Y ) := E [S(Y ,U )|Y ]. (3.13)

By the Rao-Blackwell theorem, the risk of S̃(Y ) is less than or equal to that of S(Y ,U ) for all b for any

convex risk function. This includes the regret functions in equations (??) and (??).

To implement the conditional estimators, we need consistent estimators Λ̂→p Λ and Σ̂→p Σ. Depen-

dence in the scores poses no problem, so long as Λ̂ is a consistent estimate of the zero-frequency spectral

density. Recall that T 1/2β̂(m) →d H(m)Y (1,m). Then take L independent artificially generated Brown-

ian bridges {U i
B (r )}L

i=1 with covariance matrix Λ̂. For each i , consider the estimators:

β̃i ,1 =
∑
m∗
β̂(m∗)1{m∗ = argmax

m
[T β̂(m)′Σ̂β̂(m)

− 1

π
[T 1/2πβ̂(m)+ Ĥ(m)U i

B (π,m)]′Σ̂[T 1/2πβ̂(m)+ Ĥ(m)U i
B (π,m)]+ tr (H(m)Λ̂) log(π)]} (3.14)
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and

β̃i ,2 =
∑
m∗

[β̂(1,m∗)−T −1/2
U i

b(π,m∗)

1−π ]

1{m∗ = argmax
m

[
1

π
[T 1/2πβ̂(m)+ Ĥ(m)U i

B (π,m)]′Σ̂[T 1/2πβ̂(m)+ Ĥ(m)U i
B (π,m)]−2n(m)]} (3.15)

where Ĥ(m) is the Moore-Penrose inverse of Σ̂(m) and U i
B (r,m) is the vector with the elements of U i

B (r )

in the locations indexed by m and zeros everywhere else. The next proposition gives their limiting distri-

butions:

Proposition 3.6 Under the conditions for Proposition 3.5, for each i :

T 1/2β̃i ,1 →d

∑
m∗

H(m∗)Ỹi (1,m∗)1{m∗ = argmax
m

[Ỹi (1,m)′H(m)Ỹi (1,m)

− 1

π
Ỹi (π,m)′H(m)Ỹi (π,m)+ tr (H(m)Λ) log(π)]} (3.16)

and

T 1/2β̃i ,2 →d

∑
m∗

H(m∗)
Ỹi (1,m∗)− Ỹi (π,m∗)

1−π 1{m∗ = argmax
m

[
1

π
Ỹi (π,m)′H(m)Ỹi (π,m)−2n(m)]} (3.17)

where Ỹi (r ) = r Y +U i
B (r ) and Ỹi (r,m) is a k ×1 vector with the elements of Ỹi (r ) in the locations indexed

by m and zeros elsewhere. These are the same distributions as in equations (3.11) and (3.12).

These estimators can then be averaged over i . After this step of averaging over different realizations

of the Brownian bridge, the asymptotic distributions depend on Y alone and are asymptotically the

expectations of the out-of-sample and split-sample estimators conditional on Y . Note that this Rao-

Blackwellization (henceforth, RB) does applies only to the out-of-sample and split-sample estimators

because it is only for these estimators that there is any ancillary noise process to eliminate.

In the special case of regression considered in Subsection 2.1, numerical calculations indicate that the

limiting risk of the RB estimator is strictly lower than the original estimator for at least some values of b,

implying that the out-of-sample and split-sample estimators are asymptotically inadmissible.
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3.2 Linear Regression Model and Bagging

In the special case of the regression model with orthonormal regressors, considered in subsection 2.1,

we have Λ= Σ=σ−2Ik . In this model, all of the estimators depend crucially on the partial sum process

T −1/2 ∑[Tr ]
t=1 xt yt and it follows from Proposition 3.4 that:

T −1/2σ−2
[Tr ]∑
t=1

xt yt →d Y (r ) (3.18)

and Proposition 3.5 will immediately apply. In this case, moreover, the results of Knight and Fu (2000) ap-

ply to the LASSO estimator—they show that for the LASSO estimator if maxt T −1x ′
t xt → 0 and T −1/2λT →

λ0 ≥ 0 then

T 1/2β̂→d argmin
v

v ′Σv −2v ′Y (1)+λ0Σ
k
j=1|v j |. (3.19)

In the linear regression model (subsection 2.1), we can also consider adding a bagging step to each of

the procedures. Bagging, or bootstrap aggregation, was proposed by Breiman (1996) as a way to smooth

predictive procedures. Bühlmann and Yu (2002) study the large-sample properties of bagging. The i th

bagging step resamples from the pairs {(xt , yt ), t = 1, . . . ,T } with replacement to form a pseudo-sample

{x∗
t (i ), y∗

t (i ), t = 1, . . . ,T }. The full model-selection and estimation procedure is then applied to the i th

bootstrap sample. This is repeated L times, and the L estimates are averaged to obtain the bagged esti-

mate that can be used for forecasting. The following proposition provides a key result for obtaining the

limiting distribution with bagging.

Proposition 3.7 Let {x∗
t , y∗

t , t = 1, . . . ,T } denote a bootstrap sample and g (·) be an uniformly integrable

Rk -valued functional. Then

E∗
[

g

(
1

σ2
p

T

[Tr ]∑
t=1

x∗
t y∗

t

)]
→ E∗

[
g

( r

σ2

p
T β̂+V (r )

)]
a.s.,

where E∗ represents the expectation with respect to the bootstrap conditional distribution and V(r) is a

k ×1 Brownian motion with covariance matrix σ−2I .

Thus the limiting distribution of a single bootstrap draw for the partial sums process mimics the result in
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Proposition 3.4, except that the Brownian bridge UB (r ) is replaced with a Brownian motion V (r ). Define

Y ∗(r ) = r Y +V (r ). Using Proposition 3.7, we can obtain asymptotic representations for the different

procedures incorporating a bagging step in analogy with (3.7)-(3.12):

Proposition 3.8 In large samples, the distributions of the alternative parameter estimates including a

bagging step are as follows:

(i) Using unrestricted MLE:

T 1/2β̃→d Σ
−1Y (1) (3.20)

(ii) Using the positive-part James-Stein estimator:

T 1/2β̃→d E∗
[
Σ−1Y ∗(1)max

{
1− k −2

Y ∗(1)′Σ−2Y ∗(1)
,0

}]
(3.21)

(iii) Using the Laplace estimator:

T 1/2β̃→d E∗ [
Y ∗(1)◦ h̃(W Y ∗(1))

]
(3.22)

(iv) Selecting the model using the AIC:

T 1/2β̃→d E∗
[∑

m∗
H(m∗)Y ∗(1,m∗)1{m∗ = argmax

m
[Y ∗(1,m)′H(m)Y ∗(1,m)−2n(m)]}

]
(3.23)

(v) Selecting the model minimizing out-of-sample error:

T 1/2β̃→d E∗
[∑

m∗
H(m∗)Y ∗(1,m∗)1{m∗ = argmax

m
[Y ∗(1,m)′H(m)Y ∗(1,m)

− 1

π
Y ∗(π,m)′H(m)Y ∗(π,m)+ tr (H(m)Λ) log(π)]}

]
(3.24)

(vi) Using the split-sample method:

T 1/2β̃→d E∗
[∑

m∗
H(m∗)

Y ∗(1,m∗)−Y ∗(π,m∗)

1−π

1{m∗ = argmax
m

[
1

π
Y ∗(π,m)′H(m)Y ∗(π,m)−2n(m)]}

]
(3.25)
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where
∑

m∗ denotes the summation over all the models in M and Y ∗(r,m) is a k×1 vector with the elements

of Y ∗(r ) in the locations indexed by m and zeros elsewhere.

In Appendix B, we also provide more concrete expressions for the in-sample and split-sample proce-

dures, in their standard form, with RB, and with bagging, in the special case where k = 1.

Bagging and our proposed RB procedure are closely related. RB uses simulation to integrate out the

Brownian bridge UB (r ). Bagging has an asymptotic representation that has a Brownian motion instead

of UB (r ), and then integrates out that Brownian motion. But RB has certain advantages. Bagging applies

only in the case of independent data, whereas our RB approach can be used in any setting where we

have consistent estimators of Λ and Σ. Also RB does not require resampling the data and reestimating

the model. This may make RB especially attractive when the data are dependent or in circumstances

where model estimation is computationally costly.

Breiman (1996) gave a heuristic argument for why bagging weakly reduces mean square error, but in fact

bagging can increase mean square error. The calculations of Bühlmann and Yu (2002) showed this for

the case of estimation with AIC model selection. See also Andreas and Stuetzle (2000) and Friedman and

Hall (2007). On the other hand RB does indeed weakly reduce the local asymptotic risk for any convex

loss function.

Since RB involves integrating out UB (r ), it does not affect any procedure that does not depend on this

ancillary noise. Because UB (1) = 0 full sample procedures won’t depend on this noise. In particular, RB

does not affect in-sample model selection with AIC or the Laplace estimator. But bagging will affect the

limiting distribution of all of the procedures that we consider, except for the unrestricted MLE. In the

case of in-sample model selection with AIC, bagging can be thought of as replacing hard thresholding

with soft thresholding (see Appendix B for more discussion).

4 Extensions

In this section, we consider two extensions of the basic framework of our analysis, in the context of the

linear regression model.
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4.1 Unmodeled Structural Change

A variant of our basic regression model specifies that yt = β′
t xt +ut where T 1/2β[Tr ] = W (r ), where r

may be either a stochastic or nonstochastic process. This allows various forms of structural breaks, and

is similar to specifications used by Andrews (1993) and Elliott and Mueller (2014). For example, if βt =
T −1/2b +T −1/2b̃1(t > [Ts]), then W (r ) = b + b̃1(r > s). Or, if βt = T −1 ∑t

s=1ηs with Gaussian shocks, then

W (r ) is a Brownian motion. Proposition 4.1 gives the asymptotic distribution of the partial sum process

T −1/2σ−2 ∑[Tr ]
t=1 xt yt in this variant of our basic model:

Proposition 4.1 As T →∞, the partial sum process

T −1/2σ−2
[Tr ]∑
t=1

xt yt →d Z (r ) (4.1)

where Z (r )
d=Σ∫ r

0 W (s)d s+rξ+UB (r ) , ξ∼ N (0,Σ) and UB (r ) is an independent k-dimensional Brownian

bridge with covariance matrix Σ=σ−2I .

Suppose that the researcher ignores the possibility of structural change, and simply uses the available

estimators for forecasting. The limiting distributions of the estimators will be as in Propositions 3.5, with

Y (r ) replaced by Z (r ) everywhere. Alternatively, the researcher might be aware of the possibility of struc-

tural change, and might choose to select among models and estimate parameters using a rolling window.

The estimators will then have limiting distributions that are simple extensions of those in Propositions

3.5 and 3.8. Other approaches for dealing with the possibility of parameter instability might be consid-

ered, but we leave this topic for future research.

Structural instability may be part of the motivation for considering out-of-sample forecasting methods.

It is true that RB is no longer guaranteed to reduce risk in the above model with structural change.

Nonetheless, in Monte-Carlo simulations documented in the web appendix, we find that RB does in

practice improve the risk of out-of-sample and split-sample forecasting approaches.
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4.2 Model Combination

It may also be appealing to combine forecasts made from multiple models, instead of selecting a single

model (Bates and Granger (1969) and Timmermann (2006)). Recalling that β̂(1,m) denotes the parame-

ter estimate from the model containing the variables indexed by m (with zeros in other locations), then

we could estimate the parameter vector asΣm w(m)β̂(1,m), whereΣm denotes the sum over all the mod-

els in M and the weights sum to 1. As examples of weighting schemes, we could set the weight for model

m to w(m) = exp(AIC (m)/2)
Σm∗ exp(AIC (m∗)/2) (Buckland, Burnham, and Augustin, 1997) where AIC (m) denotes the

Akaike Information Criterion in the model indexed by m, or we could weight models by out-of-sample

predictive performance setting:

w(m) =
exp[

∑T
t=[Tπ]+1`t (β̂1,t−1(m))]

Σm∗ exp[
∑T

t=[Tπ]+1`t (β̂1,t−1(m∗))]
. (4.2)

Alternatively, to do a combination version of the split-sample scheme, we could estimate the parameter

vector as Σm w(m)β̂∗(π,m) where w(m) = exp(AIC (π,m)/2)
Σm exp(AIC (π,m)/2) and AIC (π,m) denotes the Akaike Informa-

tion Criterion for the model indexed by m computed only over the first fraction π of the sample.

Proposition 4.2 If the parameter vector is estimated by Σm w(m)β̂(1,m) then in large samples, the distri-

butions of the alternative parameter estimates will be:

E {Σm w(m)H(m)Y (1,m)} (4.3)

where

w(m) ∝ exp([Y (1,m)′H(m)Y (1,m)−2n(m)]/2) (4.4)

or

w(m) ∝ exp(Y (1,m)′H(m)Y (1,m)− 1

π
Y (1,m)′H(m)Y (1,m)+ tr (H(m)Λ) log(π)) (4.5)

for exponential AIC and out-of-sample prediction error weights, respectively. Meanwhile, if the parameter

vector is instead estimated by Σm w(m)β̂∗(π,m) with exponential AIC weights, then in large samples, the
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distribution of the estimator will be:

E {Σm∗w(m)H(m)
Y (1,m)−Y (π,m)

1−π } (4.6)

where

w(m) ∝ exp([
1

π
Y (π,m)′H(m)Y (π,m)−2n(m)]/2) (4.7)

The standard bagging step can be added to any of these methods for forecast combination and the re-

sulting limiting distributions are also given by Proposition 4.2, except with Y (·) and Y (·,m) replaced by

Y ∗(·) and Y ∗(·,m) everywhere. Or RB can be added, to integrate out UB (r ).

An alternative and more standard way to obtain combination weights for the out-of-sample forecasting

scheme would be to weight the forecasts by the inverse mean square error (Bates and Granger (1969)

and Timmermann (2006)). Under our local asymptotics, this will give each model equal weight in large

samples.

5 Numerical Work

In this section we numerically explore the root mean squared error

√
E

[
(T 1/2β̃−b)′(T 1/2β̃−b)

]
, (5.1)

the square of which is asymptotically equivalent to the NMSPE in the regression model example. Given

the expressions in Propositions 3.5 and 3.8, we can simulate the asymptotic risk of different methods in

their standard form, with RB, and with bagging4 for different choices of the localization parameter b and

the number of potential predictors k. None of the methods gives the lowest risk uniformly in b. Always

using the big model is minmax, but due to the Stein phenomenon, it may be dominated by shrinkage

estimators. In all cases, RB and bagging are implemented using 100 replications, the out-of-sample and

split-sample methods both setπ= 0.5, and we setΣ=Λ= Ik . The asymptotic risk is symmetric in b and is

consequently shown only for non-negative b. The bagging results from Proposition 3.8 apply only in the

4The results with bagging are based on Proposition 3.8, which applies only in the case of the linear regression model.
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special case of the linear regression model, but RB applies in the general pseudo-likelihood framework.

Figure 1 plots the asymptotic risk of the standard MLE, JS, in-sample, out-of-sample and split-sample

methods, for the case k = 1 against b. Results with RB and bagging are also included. Results with LASSO

and Laplace estimators are not shown, but are in the web appendix.

Among the standard methods, selecting the model in-sample by AIC does better than the out-of-sample

scheme for most values of b, which in turn dominates the split-sample method. But RB changes this

ordering. RB reduces the risk of the out-of-sample and split-sample methods for all values of b, and

makes them much more competitive. Bagging accomplishes much the same thing. The fact that bagging

improves the out-of-sample and split-sample methods uniformly in b is just a numerical result, but it is

also a theoretical result for RB. Neither bagging nor RB dominates the other in terms of risk. Bagging also

helps with the in-sample method for some but not all values of b—this was also shown by Bühlmann and

Yu (2002). Recall that RB does nothing to the in-sample method.

Among all the prediction methods represented in Figure 1, which one the researcher would ultimately

would want to use depends on b, which is in turn not consistently estimable. But the split-sample and

out-of-sample methods do best for many values of the localization parameter, as long as the bagging or

RB step is included. Indeed, for all b, the best forecast is some method combined with bagging or RB.

We next consider the case where the number of potential predictors k is larger, but only one parameter

actually takes on a nonzero value. (Of course, the researcher does not know this.) Without loss of gener-

ality, we let the nonzero element of b be the first element and so specify that b = (b1,0, . . . ,0)′. To keep the

model space manageable, the set of possible models M consists of models with the first l predictors, for

l ∈ {0,1, ...k}. Figures 2 and 3 plot the risk for k = 3 and k = 20 against b1 for in-sample, out-of-sample and

split-sample methods in the standard form, with RB, and with bagging. The positive-part James-Stein

estimator is also included. The split-sample method with either RB or bagging compares very favorably

with the other alternatives. Other numerical results with multiple predictors are contained in the web

appendix, and give similar conclusions.

Figure 4 plots the risk for k = 1 against b for the in-sample, out-of-sample and split-sample forecast

combination methods, in their standard form, with RB and with bagging. These are based on simulating

the distributions in Proposition 4.2. The combination forecasts are generally better than forecasts based
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on selecting an individual model. Nonetheless, with combined forecasts as with individual forecasts, in

the absence of a randomization step, using in-sample AIC weights does best for most values of b. Adding

in RB/bagging allows better predictions to be made. RB/bagging reduces the risk of the combination

forecasts with out-of-sample or split-sample weights uniformly in b. Once an RB/bagging step is added

in, there is no clear winner among the in-sample, out-of-sample and split-sample forecast combination

methods.

Although our numerical work considers the quadratic loss function, it should be noted that the weak

reduction in risk from RB applies with any convex loss function.

6 Monte Carlo Simulations

The results in the previous section are based on a local asymptotic sequence. The motivation for this is

to provide a good approximation to the finite sample properties of different forecasting methods while

retaining some assurance that they are not an artifact of a specific simulation design. As some check

that the local asymptotics are indeed relevant to small samples, we did a small simulation consisting of

equation (2.13) with t (5) errors5 scaled to have unit variance, independent standard normal regressors,

a sample size T = 100, and different values of k. In each simulation we drew T +1 observations on yt and

xt , used the first T for model selection and parameter estimation according to one of the methods dis-

cussed above. Then given xT+1, we worked out the prediction for yT+1, and computed the mean square

prediction error (MSPE).

Figure 5 plots the simulated root normalized mean square prediction errors (
p

T · (MSPE −1)) against

β for k = 1 for the MLE, JS, in-sample, out-of-sample and split-sample methods, in their standard form,

with RB and with bagging. Our simulations included results using leave-one-out cross-validation, the

Laplace and LASSO estimators. These are omitted from Figure 5, but shown in the web appendix. Not

surprisingly, leave-one-out cross-validation gave very similar results to AIC. The web appendix also con-

tains results for higher values of k.

The simulations in Figure 5 and in the web appendix give very similar conclusions to the local asymptotic

calculations (although MSPEs for all methods tend to be a bit higher than would be predicted by the local

5Results with normal errors were very similar.
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asymptotics for k = 20, because of estimation of variance-covariance matrices). Without RB or bagging,

the in-sample scheme generally gives the best forecasts, followed by out-of-sample, with the split-sample

doing the worst. RB or bagging substantially improve the performance of the out-of-sample and split

sample methods.

The web appendix also contains some simulations in which the parameters follow a random walk, but

the econometrician treats them as though they were fixed. Although there is no theoretical result that RB

has to reduce risk in this case, we find that risk is in fact lowered by RB as long as the parameter variation

is not too great.

7 Application

We finally consider a small empirical illustration to the classic problem of forecasting stock returns. We

follow the setup of Goyal and Welch (2008) in forecasting annual excess stock returns using data from

1926 to 2014 with 13 possible predictors: book-to-market ratio, Treasury bill yields, long-term yields,

net equity expansion, inflation, percent equity issuing, long term returns, stock variance, default yield

spread, default return spread, dividend-price ratio, dividend yield and earnings-price ratio. These are

all the predictors considered by Goyal and Welch (2008) for which data are available over the full sample

period, excepting some that are perfectly multicollinear with the included predictors. We then consider

one-year-ahead forecasting of stock returns using all possible subsets of these 13 predictors including

the empty set, for a total of 8,192 models. Definitions of the predictors and sources are in Goyal and

Welch (2008). Each model includes an intercept.

AIC chooses a single predictor: the book-to-market ratio. The same is true selecting the model with the

split-sample approach. Selecting the model by out-of-sample performance, percent equity issuing and

the dividend price ratio are the two chosen predictors. Table 1 shows the probability of the chosen model

having no predictors whatsoever (other than the intercept), using AIC, out-of-sample and split-sample

schemes with bagging and out-of-sample and split-sample schemes with RB. Having no predictors other

than the intercept amounts to forecasting excess stock returns using the unconditional mean. Table 1

also shows the expected number of predictors (other than the intercept) for all five simulation schemes.

AIC with bagging, AIC with RB and the split-sample approach with RB all put most weight on models
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with 0 or1 predictors, and thereby implying heavy shrinkage. The out-of-sample approach with either

bagging or RB chooses larger models. Table 1 also reports the fraction of draws for which each of the

13 possible predictors is included in the model, for each of the five simulation schemes. Finally, Table 1

gives the forecast for excess stock returns in 2015 using each of the methods. These are very close to the

unconditional mean, indicating a considerable degree of shrinkage.

8 Conclusion

When forecasting using k potential predictors, each of which has a coefficient that is local to zero, there

are several competing methods, none of which is most accurate uniformly in the localization parameter,

which is in turn not consistently estimable. Optimizing the in-sample fit, as measured by the Akaike

information criterion, generally does better than out-of-sample or split-sample methods. However, the

out-of-sample and split-sample methods can be improved substantially by removing the impact of an

ancillary noise term that appears in their limit representations, either through Rao-Blackwellization or

bagging. Rao-Blackwellization uniformly lowers asymptotic risk of the out-of-sample and split-sample

methods and can be implemented without having to resample the data. For important ranges of the local

parameters, these modified procedures are very competitive with in-sample methods.
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A Appendix: Proof of Propositions

Proof of Proposition 3.4: We have

T −1/2
[Tr ]∑
t=1

∂`t (0)

∂β
= T −1/2

[Tr ]∑
t=1

∂`t (β0,T )

∂β
−T −1/2

[Tr ]∑
t=1

∂2`t (β0,T )

∂β∂β′ β0,T +op (1)

→d rΣb +B(r ),

where B(r ) denotes a Brownian motion with covariance matrixΛ. Let Y (r ) = rΣb+B(r ), and let Y = Y (1)

which is N (Σb,Λ). Define UB (r ) = B(r )− r B(1). Then UB is a Brownian bridge by standard arguments,

and by calculating the covariance between UB (r ) and B(1) it can be verified that UB is independent of

B(1). We can therefore write

Y (r ) = rΣb +B(r )

= rΣb + r B(1)+UB (r )

= r Y +UB (r ).

and Y =Σb +B(1) is uncorrelated with UB and hence independent of UB . ■

Proof of Proposition 3.5: Let β̂ denote the unrestricted estimator and let β̂(m) denote the restricted

estimators as defined in Section 2. Equations (3.7) and (3.8) immediately follow because T 1/2β̂→d Y .

[note: I think we need an assumption either of identification or directly on limits of β̂(m)]

The AIC objective function (to be maximized) is:

2
T∑

t=1
lt (β̂(m))−2n(m) = 2

T∑
t=1

lt (0)+2β̂(m)′
T∑

t=1

∂lt (0)

∂β
+ β̂(m)′

T∑
t=1

∂2lt (0)

∂β∂β′ β̂(m)−2n(m)+op (1),

which is asymptotically the same, up to the same affine transformation across all models, as

Y (1,m)′H(m)Y (1,m)−2n(m),

noting that H(m)ΣH(m) = H(m).
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The OOS objective function (to be maximized) is:

T∑
t=[Tπ]+1

lt (β̂1,t−1(m)) =
T∑

t=[Tπ]+1

[
lt (0)+ β̂1,t−1(m)′

∂lt (0)

∂β
+ 1

2
β̂1,t−1(m)′

∂2lt (0)

∂β∂β′ β̂1,t−1(m)

]
+op (1).

Let S(m) be the diagonal matrix with ones in the diagonal elements indexed by m and zeros elsewhere.

Now T 1/2β̂1,[Tr ](m) →d H(m) Y (r )
r and

T∑
t=[Tπ]+1

β̂1,t−1(m)′
∂lt (0)

∂β
=

T∑
t=[Tπ]+1

t−1∑
s=1

∂ls(β0,T )

∂β

′ 1

t −1
H(m)

∂lt (β0,T )

∂β

+b′ΣH(m)T −1/2
T∑

t=[Tπ]+1

∂lt (β0,T )

∂β
+

T∑
t=[Tπ]+1

β̂1,t−1(m)′
1

T
Σb +op (1)

→d

∫ 1

π

B(r )′

r
H(m)dB(r )+b′ΣH(m)(B(1)−B(π))+

∫ 1

π

Y (r )

r

′
H(m)Σbdr

=
∫ 1

π

Y (r )′

r
H(m)dB(r )+

∫ 1

π

Y (r )

r

′
H(m)Σbdr

=
∫ 1

π

Y (r )′

r
H(m)dY (r ).

Consequently, the OOS objective function is asymptotically the same, up to the same affine transforma-

tion across all models, as

2
∫ 1

π

Y (r )′

r
H(m)dY (r )−

∫ 1

π

Y (r )′

r
H(m)

Y (r )

r
dr.

Using an argument similar to Hansen and Timmermann (2013), define

F (Y ,r ) = 1

r
Y (r )′H(m)Y (r )− tr (H(m)Λ) log(r ).

By Ito’s lemma

dF (Y ,r ) = {− 1

r 2 Y (r )′H(m)Y (r )− 1

r
tr (H(m)Λ)+2b′ΣH(m)Y (r )+ 1

r
tr (H(m)Λ)}dr + 2

r
Y (r )′H(m)dB(r )

= {− 1

r 2 Y (r )′H(m)Y (r )+2b′ΣH(m)Y (r )}dr + 2

r
Y (r )′H(m)dB(r )

= {− 1

r 2 Y (r )′H(m)Y (r )+2b′ΣH(m)Y (r )}dr + 2

r
Y (r )′H(m)dY (r )−2Y (r )′H(m)Σbdr

= 2

r
Y (r )′H(m)dY (r )− 1

r 2 Y (r )′H(m)Y (r )dr.
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So

F (Y ,1)−F (Y ,π) =
∫ 1

π
dF (Y ,r ) = 2

∫ 1

π

Y (r )′

r
H(m)dY (r )−

∫ 1

π

Y (r )′

r
H(m)

Y (r )

r
dr

= Y (1)′H(m)Y (1)− 1

π
Y (π)′H(m)Y (π)+ tr (H(m)Λ) log(π).

Consequently, the OOS objective function is asymptotically the same, up to the same affine transforma-

tion across all models, as

Y (1)′H(m)Y (1)− 1
πY (π)′H(m)Y (π)+ tr (H(m)Λ) log(π).

The AIC estimated over the first fraction π of the sample is:

2
[Tπ]∑
t=1

lt (β̂1,[Tπ](m))−2n(m) = 2
[Tπ]∑
t=1

lt (0)+2β̂1,[Tπ](m)′
[Tπ]∑
t=1

∂lt (yt ,0)

∂β

+ β̂1,[Tπ](m)′
[Tπ]∑
t=1

∂2lt (yt ,0)

∂β∂β′ β̂1,[Tπ](m)−2n(m)+op (1)

which is asymptotically the same, up to the same affine transformation across all models, as

1
πY (π,m)′H(m)Y (π,m)−2n(m)

The limiting distributions in Proposition 3.5 all follow from these results and the facts that T 1/2β̂ →d

Σ−1Y (1) and T 1/2β̂(m) →d H(m)Y (1,m). ■

Proof of Proposition 3.6: We know that T 1/2β̂(m) →d H(m)Ỹi (1,m) and Ĥ(m) →p H(m). Hence T 1/2β̂(m)+
Ĥ(m)

U i
B (r,m)

r →d H(m) Ỹi (r,m)
r . The result follows immediately. ■

Proof of Proposition 3.7: Let {x∗
t , y∗

t } denote a bootstrap sample and let u∗
t = y∗

t −β′
T x∗

t , t = 1, . . . ,T . β̂ is

the OLS estimate using the original data. Using the assumption that the xt are orthonormal, we can take

β̂= T −1 ∑T
t=1 xt yt . Then, in the bootstrap conditional probability space (conditioning on the realization
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of {xt , yt }),

1

σ2
p

T

[Tr ]∑
t=1

x∗
t y∗

t − r

σ2

p
T β̂= 1

σ2
p

T

[Tr ]∑
t=1

x∗
t y∗

t − r

σ2
p

T

T∑
t=1

xt yt

= 1

σ2
p

T

[Tr ]∑
t=1

x∗
t

(
x∗′

t βT +u∗
t

)− r

σ2
p

T

T∑
t=1

xt (x ′
tβT +ut )

=
(

1

σ2
p

T

[Tr ]∑
t=1

[
x∗

t x∗′
t − 1

T

T∑
s=1

xs x ′
s

])
βT + 1

σ2
p

T

Tr∑
t=1

(
x∗

t u∗
t − 1

T

T∑
s=1

xsus

)

=
(

1

σ2T

[Tr ]∑
t=1

[
x∗

t x∗′
t − 1

T

T∑
s=1

xs x ′
s

])
b + 1

σ2
p

T

Tr∑
t=1

(
x∗

t u∗
t − 1

T

T∑
s=1

xsus

)
.

The first term is op∗(1) by a Uniform Law of Large Numbers for partial sums (e.g., Gaenssler and Ziegler

(1994)), and the second converges almost surely to V (r ), from Theorem 2.2 of Park (2002). Therefore

1

σ2
p

T

[Tr ]∑
t=1

x∗
t y∗

t = r

σ2

p
T β̂+V (r )+op (1) a.s.,

Given that g is uniformly integrable,

E∗
[

g

(
1

σ2
p

T

[Tr ]∑
t=1

x∗
t y∗

t

)]
→ E

[
g

( r

σ2

p
T β̂+V (r )

)]
a.s.,

as required. ■

The proofs of Propositions 3.8 and 4.2 involve exactly the same calculations as in Proposition 3.5 and are

hence omitted.

Proof of Proposition 4.1: We have

T −1/2σ−2
[Tr ]∑
t=1

xt yt = T −1/2σ−2
[Tr ]∑
t=1

xt x ′
tβt +T −1/2σ−2

[Tr ]∑
t=1

xt ut

= T −3/2σ−2
[Tr ]∑
t=1

xt x ′
tΣ

t
s=1ηs +T −1/2σ−2

[Tr ]∑
t=1

xt ut

→d σηΣ

∫ r

0
W (s)d s +B(r ) =σηΣ

∫ r

0
W (s)d s + rξ+UB (r ).

where B(r ) is a Brownian motion with covariance matrixΛ. ■
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B Appendix: Shrinkage Representations in the case k = 1

In the case k = 1, and with Σ=Λ, some of the expressions in Propositions 3.5 and 3.8 can be simplified.

For the AIC estimator in its standard form we have:

T 1/2β̃→d Σ
−1Y 1(|Y | >

p
2Σ). (B1)

Rao-Blackwellization makes no difference to the AIC estimator, and equation (B1) continues to apply.

For the AIC estimator, with bagging, we have:

T 1/2β̃→d Σ
−1{Y −YΦ(

p
2−κY )+κφ(

p
2−κY )+YΦ(−p2−κY )−κφ(−p2−κY )},

where κ=Σ−1/2, shown in proposition 2.2 of Bühlmann and Yu (2002).6 Comparing this to equation (B1),

in the context of the AIC estimator, bagging is effectively replacing a hard thresholding procedure with a

soft thresholding counterpart.

For the split-sample estimator, we have:

T 1/2β̃→d Σ
−1z11(|z2| >

√
2Σ

π
),

where z1 = Y − UB (π)
1−π and z2 = Y + UB (π)

π . By direct calculations, z1 is N (Σb, 1
1−πΣ), z2 is N (Σb, 1

πΣ) and z1

and z2 are mutually independent.

With RB, for the split-sample estimator in the i th simulated sample, we have:

T 1/2β̃i →d Σ
−1(Y −

√
πΣ

1−π z(i ))1(|Y +
√

(1−π)Σ

π
z(i )| >

√
2Σ

π
) = (Σ−1Y −γz(i ))1(|γY + z(i )| >

√
2

1−π ),

where z(i ) is N (0,1), and is independent of Y and γ=
√

π
(1−π)Σ . Thus for the overall split-sample estima-

6Indeed, given the orthonormal setting, even if k > 1, if we sort the coefficient estimates by their absolute magnitude and
apply AIC sequentially to these models, dropping variables one at a time as long as called for by the information criterion, then
the above two expressions will apply to each element of β̃−β (Bühlmann and Yu, 2002; Stock and Watson, 2012). But the use of
the AIC that we are considering in this paper is to select among all 2k possible models and so no such simplification is available
in this case.
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tor with RB, we have:

T 1/2β̃→d Σ
−1{Y −YΦ(

√
2

1−π −γY )−γφ(

√
2

1−π −γY )+YΦ(−
√

2

1−π −γY )+γφ(

√
2

1−π −γY )}.

Meanwhile, for bagging the split-sample estimator in the i th bagging sample, we have:

T 1/2β̃i →d z1(i )1(|z2(i )| >
√

2Σ

π
)

where z1(i ) = Y + Vi (1)−Vi (π)
1−π and z2(i ) = Y + Vi (π)

π . By direct calculations, z1(i )|Y is N (Y , Σ
(1−π) ), z2(i )|Y is

N (Y , Σπ ) and the two are independent, conditional on Y . Thus for the overall split-sample with bagging

estimator:

T 1/2β̃→d Σ
−1{Y −YΦ(

p
2−

√
π

Σ
Y )+YΦ(−

p
2−

√
π

Σ
Y )}.

For the out-of-sample estimator, we have:

T 1/2β̃→d Σ
−1Y 1(|z3| <

√
max(Y 2π+π log(π)Σ,0)),

where z3 =πY +UB (π) is N (πΣb,πΣ)

With RB, for the out-of-sample estimator, in the i th simulated sample, we have:

T 1/2β̃i →d Σ
−1Y 1(|z(i )| <

√
max(

Y 2

πΣ2 + log(π)

πΣ
,0)−b),

Thus for the overall out-of-sample estimator with RB:

T 1/2β̃→d Σ
−1Y {Φ(

√
max(

Y 2

πΣ2 + log(π)

πΣ
,0)−b)−Φ(−

√
max(

Y 2

πΣ2 + log(π)

πΣ
,0)−b)}.

Lastly, for bagging the out-of-sample estimator in the i th bagging sample, we have:

T 1/2β̃i →d Σ
−1(Y +Vi (1))1((Y +Vi (1))2 − (πY +Vi (π))2 + log(π)Σ> 0).

In this last case, we have no closed form expression for the overall out-of-sample estimator with bagging.
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In all cases, we can write the limit of T 1/2β̃ as Y g (Y ) and we think of g (Y ) as the implied local asymptotic

shrinkage function. The web appendix plots the implied g (Y ) functions for the AIC, out-of-sample and

split sample estimators, in their standard form, and with RB and bagging.
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Table 1: Application Results

AICB OOSB SSB OOSRB SSRB
Probability of no predictors 0.72 0.00 0.40 0.00 0.34
Expected Number of predictors 0.28 4.86 0.60 5.00 0.66
Marginal probability of inclusion of each predictor:
Book-to-market ratio 0.20 0.40 0.30 0.46 0.58
Treasury bill yields 0.08 0.36 0.14 0.68 0.02
Long-term yields 0.00 0.20 0.00 0.48 0.00
Net equity expansion 0.00 0.34 0.14 0.08 0.06
Inflation 0.00 0.32 0.00 0.22 0.00
Percent equity issuing 0.00 0.78 0.02 0.86 0.00
Long term returns 0.00 0.54 0.00 0.80 0.00
Stock variance 0.00 0.32 0.00 0.42 0.00
Default yield spread 0.00 0.40 0.00 0.52 0.00
Default return spread 0.00 0.26 0.00 0.00 0.00
Dividend-price ratio 0.00 0.20 0.00 0.12 0.00
Dividend yield 0.00 0.30 0.00 0.20 0.00
Earnings-price ratio 0.00 0.44 0.00 0.16 0.00
Forecast for Excess Returns in 2015 0.05 0.05 0.05 0.08 0.04
Memo: Unconditional Mean:1926-2014 : 0.06

Notes: For the empirical application described in section 7, this table reports the fraction of draws with
each simulation scheme that includes no predictors (other than the intercept), the average number of
predictors (other than the intercept) chosen in each scheme, and the fraction of draws that includes each
one of the predictors. The objective is forecasting year-ahead excess stock returns using annual data from
1926-2014. The forecast for excess stock returns in 2015 and the unconditional mean are also included.
Model selection is over all 8,192 permutations of the 13 predictors. Definitions of the predictors and data
sources are in Goyal and Welch (2008).
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Figure 1: Local Asymptotic Risk (k = 1)
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Notes: These are the simulated local asymptotic risk values, equation (5.1), for different procedures, plotted against b.
Note that MLE is the same without any resampling, with bagging or with RB. AIC is the same without any resampling or
with RB.
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Figure 2: Local Asymptotic Risk (k = 3)
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Notes: These are the simulated local asymptotic risk values, equation (5.1), for different procedures, plotted against
b1, where b = (b1,0, . . . ,0)′. Note that MLE is the same without any resampling, with bagging or with RB. AIC is the same
without any resampling or with RB.
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Figure 3: Local Asymptotic Risk (k = 20)
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Notes: These are the simulated local asymptotic risk values, equation (5.1), for different procedures, plotted against
b1, where b = (b1,0, . . . ,0)′. Note that MLE is the same without any resampling, with bagging or with RB. AIC is the same
without any resampling or with RB.
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Figure 4: Local Asymptotic Risk: Combination Forecasts (k = 1)
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Notes: These are the simulated local asymptotic risk values, equation (5.1), for different procedures, plotted against b.
Note that MLE is the same without any resampling, with bagging or with RB. Exponential AIC forecast combination is the
same without any resampling or with Rao-Blackwellization.
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Figure 5: Root Normalized Mean Square Prediction Errors (k = 1)
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Notes: These are the simulated root normalized mean square prediction errors using different procedures, plotted
against β. There is one possible predictor and the sample size is T = 100. Note that MLE is the same without any resam-
pling, with bagging or with RB. AIC is the same without any resampling or with RB.
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